NORA ECCLES HARRISON
CARDIOVASCULAR RESEARCH &
TRAINING INSTITUTE

ADVANCING CARDIOVASCULAR RESEARCH SINCE 1969

CUTTING EDGE CARDIOVASCULAR RESEARCH

Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI) delivers cutting-edge cell-to-bedside research and education of cardiovascular disease, which is one of the leading causes of death worldwide. At the CVRTI, we are both developing new insights into the biology of heart dmuscle cells, and developing novel therapeutics for patients with heart failure and cardiac arrhythmias such as sudden cardiac death.

Located at the University of Utah, the CVRTI nucleates a campus wide, multidisciplinary team of fourteen individual investigator laboratories who are both scientists and physician scientists. The research of the laboratories spans from basic muscle biology and channel electrophysiology to metabolism and genetics. Founded in 1969, the CVRTI is one of the oldest cardiovascular institutes in the country, and its research has already impacted clinical care from development of the first artificial heart, to the genetic basis of long QT arrhythmias, to using electricity to map heart dimensions for arrhythmia ablation, to myocardial recovery.

Nora Eccles Harrison Cardiovascular Research & Training Institute building

 February Seminar Series


University of Utah Speaker

Thursday, February 15, 2024

12:00pm – 1:00pm (MT)

 Bending the Curve: Having the Trial Meet the Patient!

 Adrian Hernandez, MD, MHS
 Duke Health Cardiology Distinguished Professor
Executive Director, Duke Clinical Research Institute Vice Dean, Duke University School of Medicine 



Join us for a hybrid meeting via Zoom or at  Eccles Health Sciences Education Building, EHSEB, Bldg. 575, Room 2680, 25 S. 2000 E. (Lunch Provided)

 Email Megan woodard, megan.woodard@utah.edu for Zoom Link



Heart failure is a dangerous medical disorder that develops when the heart cannot adequately pump blood throughout the body, resulting in insufficient blood flow. Although it is a condition that affects both men and women, research in the past few years has shown that women have different symptoms than men.

Latest Publications

<h3>Distinct transcriptomic and proteomic profile specifies patients who have heart failure with potential of myocardial recovery on mechanical unloading and circulatory support</h3>

Distinct transcriptomic and proteomic profile specifies patients who have heart failure with potential of myocardial recovery on mechanical unloading and circulatory support

As a last resort for people with end-stage heart failure, doctors can implant a device called a left ventricular assist device (LVAD), a mechanical pump that takes the load off the heart muscle. While the device is intended to stay in the body permanently, doctors noticed that, in some patients, the assistance provided by the LVAD allowed the patient’s own heart to regain strength and function.
<h3>GJA1-20k rescues Cx43 localization and arrhythmias in arrhythmogenic cardiomyopathy</h3>

GJA1-20k rescues Cx43 localization and arrhythmias in arrhythmogenic cardiomyopathy

This report established a new paradigm for arrhythmia treatment: improving Connexin 43 trafficking with gene therapy in arrhythmogenic cardiomyopathy. Here Connexin43 (Cx43} hemichannels (green) exit the Golgi apparatus and utilize the cytoskeleton (yellow} to traffic to cardiac intercalated discs. In healthy hearts, GJA1-20k (red} organizes the cytoskeleton delivery highway for efficient Cx43 hemichannel trafficking and healthy cardiac rhythm. In mice and humans with Arrhythmogenic Cardiomyopathy, GJA1-20k is diminished, resulting in impaired trafficking highways, limited Cx43 localization to intercalated discs, and ventricular arrhythmia. In a mouse model of Arrhythmogenic Cardiomyopathy, gene therapy with transduction of exogenous GJA1-20k limits cardiac arrhythmia. (Created with Biorender.com}

CAREERS AT CVRTI

We’re Hiring!
Openings for graduate students, postdoctoral fellows, and grants/contracts officer at the CVRTI.

Learn More

Twitter Posts