NORA ECCLES HARRISON
CARDIOVASCULAR RESEARCH &
TRAINING INSTITUTE

ADVANCING CARDIOVASCULAR RESEARCH SINCE 1969

CUTTING EDGE CARDIOVASCULAR RESEARCH

Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI) delivers cutting-edge cell-to-bedside research and education of cardiovascular disease, which is one of the leading causes of death worldwide. At the CVRTI, we are both developing new insights into the biology of heart dmuscle cells, and developing novel therapeutics for patients with heart failure and cardiac arrhythmias such as sudden cardiac death.

Located at the University of Utah, the CVRTI nucleates a campus wide, multidisciplinary team of fourteen individual investigator laboratories who are both scientists and physician scientists. The research of the laboratories spans from basic muscle biology and channel electrophysiology to metabolism and genetics. Founded in 1969, the CVRTI is one of the oldest cardiovascular institutes in the country, and its research has already impacted clinical care from development of the first artificial heart, to the genetic basis of long QT arrhythmias, to using electricity to map heart dimensions for arrhythmia ablation, to myocardial recovery.

Nora Eccles Harrison Cardiovascular Research & Training Institute building

CVRTI Seminar Series

We are excited to announce that the CVRTI Seminar Series will be making a comeback at the end of August 2024! 🎉

We are currently finalizing the details and will be sharing them soon. We appreciate your patience and enthusiasm.

Please stay tuned for updates. We look forward to welcoming you back to our enriching and insightful seminars.

Thank you for your continued support!


An aneurysm is an abnormal bulge in the wall of a blood vessel. It can occur in many parts of the body, including the brain. Cerebral aneurysms, also called brain aneurysms, are very dangerous since they are likely to rupture and cause life-threatening hemorrhages. To manage this significant condition, awareness of the treatment options, recovery process, and potential for early detection is essential.

brain

Latest Publications

<h3>Distinct transcriptomic and proteomic profile specifies patients who have heart failure with potential of myocardial recovery on mechanical unloading and circulatory support</h3>

Distinct transcriptomic and proteomic profile specifies patients who have heart failure with potential of myocardial recovery on mechanical unloading and circulatory support

As a last resort for people with end-stage heart failure, doctors can implant a device called a left ventricular assist device (LVAD), a mechanical pump that takes the load off the heart muscle. While the device is intended to stay in the body permanently, doctors noticed that, in some patients, the assistance provided by the LVAD allowed the patient’s own heart to regain strength and function.
<h3>GJA1-20k rescues Cx43 localization and arrhythmias in arrhythmogenic cardiomyopathy</h3>

GJA1-20k rescues Cx43 localization and arrhythmias in arrhythmogenic cardiomyopathy

This report established a new paradigm for arrhythmia treatment: improving Connexin 43 trafficking with gene therapy in arrhythmogenic cardiomyopathy. Here Connexin43 (Cx43} hemichannels (green) exit the Golgi apparatus and utilize the cytoskeleton (yellow} to traffic to cardiac intercalated discs. In healthy hearts, GJA1-20k (red} organizes the cytoskeleton delivery highway for efficient Cx43 hemichannel trafficking and healthy cardiac rhythm. In mice and humans with Arrhythmogenic Cardiomyopathy, GJA1-20k is diminished, resulting in impaired trafficking highways, limited Cx43 localization to intercalated discs, and ventricular arrhythmia. In a mouse model of Arrhythmogenic Cardiomyopathy, gene therapy with transduction of exogenous GJA1-20k limits cardiac arrhythmia. (Created with Biorender.com}

CAREERS AT CVRTI

We’re Hiring!
Openings for graduate students, postdoctoral fellows, and grants/contracts officer at the CVRTI.

Learn More

Twitter Posts